Airline industry
and safety officials are concerned that pilots’ flying skills are becoming rusty and their ability to handle unexpected
situations is eroding because most flying is delegated to computers in today’s highly automated planes.
WASHINGTON
August 30, 2011 - Are airline pilots forgetting how to
fly? As planes become ever more reliant on automation to navigate crowded skies, safety officials worry there will be more
deadly accidents traced to pilots who have lost their hands-on instincts in the air.
Hundreds of people have died over the past five years
in "loss of control" accidents in which planes stalled during flight or got into unusual positions that pilots could not correct.
In some cases, pilots made the wrong split-second decisions, with catastrophic results - for example, steering the plane's
nose skyward into a stall instead of down to regain stable flight.
Spurred in part by federal
regulations in the U.S. that require greater reliance on computerized flying, the airline industry is suffering from "automation
addiction," said Rory Kay, an airline captain and co-chairman of a Federal Aviation Administration committee on pilot training.
"We're seeing a new breed of accident with these state-of-the art planes."
Pilots use automated systems
to fly airliners for all but about three minutes of a flight: the takeoff and landing. Most of the time pilots are programming
navigation directions into computers rather than using their hands on controls to fly the plane. They have few opportunities
to maintain their skills by flying manually, Kay's advisory committee warns.
Fatal airline accidents have
decreased dramatically in the U.S. over the past decade. However, The Associated Press interviewed pilots, industry officials
and aviation safety experts who expressed concern about the implications of decreased opportunities for manual flight, and
reviewed more than a dozen loss-of-control accidents around the world.
Airlines and regulators discourage
or even prohibit pilots from turning off the autopilot and flying planes themselves, the committee said. Safety experts say
they're seeing cases in which pilots who are suddenly confronted with a loss of computerized flight controls don't appear
to know how to respond immediately, or they make errors - sometimes fatally so.
A draft FAA study found pilots
sometimes "abdicate too much responsibility to automated systems." Because these systems are so integrated in today's planes,
one malfunctioning piece of equipment or a single bad computer instruction can suddenly cascade into a series of other failures,
unnerving pilots who have been trained to rely on the equipment.
The study examined 46 accidents
and major incidents, 734 voluntary reports by pilots and others as well as data from more than 9,000 flights in which a safety
official rode in the cockpit to observe pilots in action. It found that in more than 60 per cent of accidents, and 30 per
cent of major incidents, pilots had trouble manually flying the plane or made mistakes with automated flight controls.
A typical mistake was not
recognizing that either the autopilot or the auto-throttle - which controls power to the engines - had disconnected. Others
failed to take the proper steps to recover from a stall in flight or to monitor and maintain airspeed.
"We're forgetting how to
fly," Kay said.
In the most recent fatal
airline crash in the U.S., in 2009 near Buffalo, N.Y., the co-pilot of a regional airliner programmed incorrect information
into the plane's computers, causing it to slow to an unsafe speed. That triggered a stall warning. The startled captain, who
hadn't noticed the plane had slowed too much, responded by repeatedly pulling back on the control yoke, overriding two safety
systems, when the correct procedure was to push forward.
An investigation later found
there were no mechanical or structural problems that would have prevented the plane from flying if the captain had responded
correctly. Instead, his actions caused an aerodynamic stall. The plane plummeted to earth, killing all 49 people aboard and
one on the ground.
Two weeks after the New York
accident, a Turkish Airlines Boeing 737 crashed into a field while trying to land in Amsterdam. Nine people were killed and
120 injured. An investigation found that one of the plane's altimeters, which measures altitude, had fed incorrect information
to the plane's computers.
That, in turn, caused the
auto-throttle to reduce speed to a dangerously slow level so that the plane lost lift and stalled. Dutch investigators described
the flight's three pilots' "automation surprise" when they discovered the plane was about to stall. They hadn't been closely
monitoring the airspeed.
Last month, French investigators
recommended that all pilots get mandatory training in manual flying and handling a high-altitude stall. The recommendations
were in response to the 2009 crash of an Air France jet flying from Brazil to Paris. All 228 people aboard were killed.
An investigation found that
airspeed sensors fed bad information to the Airbus A330's computers. That caused the autopilot to disengage suddenly and a
stall warning to activate.
The co-pilot at the controls
struggled to save the plane, but because he kept pointing the plane's nose up, he actually caused the stall instead of preventing
it, experts said. Despite the bad airspeed information, which lasted for less than a minute, there was nothing to prevent
the plane from continuing to fly if the pilot had followed the correct procedure for such circumstances, which is to continue
to fly levelly in the same direction at the same speed while trying to determine the nature of the problem, they said.
In such cases, the pilots
and the technology are failing together, said former US Airways Capt. Chesley (Sully) Sullenberger, whose precision flying
is credited with saving all 155 people aboard an Airbus A320 after it lost power in a collision with Canada geese shortly
after takeoff from New York's LaGuardia Airport two years ago.
"If we only look at the pilots
- the human factor - then we are ignoring other important factors," he said. "We have to look at how they work together."
The ability of pilots to
respond to the unexpected loss or malfunction of automated aircraft systems "is the big issue that we can no longer hide from
in aviation," said Bill Voss, president of the Flight Safety Foundation in Alexandria, Va. "We've been very slow to recognize
the consequence of it and deal with it."
The foundation, which is
industry-supported, promotes aviation safety around the world.
Airlines are also seeing
smaller incidents in which pilots waste precious time repeatedly trying to restart the autopilot or fix other automated systems
when what they should be doing is "grasping the controls and flying the airplane," said Bob Coffman, another member of the
FAA pilot training committee and an airline captain.
"All of this has to be instinctive,
it has to be trained to the point of, 'Oh, I know what to do,' " he said.
Paul Railsback, operations
director at the Air Transport Association, which represents airlines, said: "We think the best way to handle this is through
the policies and training of the airlines to ensure they stipulate that the pilots devote a fair amount of time to manually
flying. We want to encourage pilots to do that and not rely 100 per cent on the automation. I think many airlines are moving
in that direction."
In May, the FAA proposed
requiring airlines to train pilots on how to recover from a stall, as well as expose them to more realistic problem scenarios.
But other new regulations
are going in the opposite direction. Today, pilots are required to use their autopilot when flying at altitudes above 24,000
feet, which is where airliners spend much of their time cruising. The required minimum vertical safety buffer between planes
has been reduced from 2,000 feet to 1,000 feet. That means more planes flying closer together, necessitating the kind of precision
flying more reliably produced by automation than human beings.
The same situation is increasingly
common closer to the ground.
The FAA is moving from an
air traffic control system based on radar technology to more precise GPS navigation. Instead of time-consuming, fuel-burning
stair-step descents, planes will be able to glide in more steeply for landings with their engines idling. Aircraft will be
able to land and take off closer together and more frequently, even in poor weather, because pilots will know the precise
location of other aircraft and obstacles on the ground. Fewer planes will be diverted.
But the new landing procedures
require pilots to cede even more control to automation.
"Those procedures have to
be flown with the autopilot on," Voss said. "You can't afford a sneeze on those procedures."
Even when not using the new
procedures, airlines direct their pilots to switch on the autopilot about a minute and a half after takeoff, when the plane
reaches about 1,000 feet, Coffman said. The autopilot generally doesn't come off until about a minute and a half before landing,
he said.
Pilots still control the
plane's flight path. But they are programming computers rather than flying with their hands.
Opportunities to fly manually
are especially limited at commuter airlines, where pilots may fly with the autopilot off for about 80 seconds out of a typical
two-hour flight, Coffman said.
But it is the less experienced
first officers starting out at smaller carriers who most need manual flying experience. Airline training programs are focused
on training pilots to fly with the automation, rather than without it. Senior pilots, even if their manual flying skills are
rusty, can at least draw on experience flying older generations of less automated planes.
Adding to concerns about
an overreliance on automation is an expected pilot shortage in the U.S. and many other countries. U.S. airlines used to be
able to draw on a pool of former military pilots with extensive manual flying experience. But more pilots now choose to stay
in the armed forces, and corporate aviation competes for pilots with airlines, where salaries have dropped.
Changing training programs
to include more manual flying won't be enough because pilots spend only a few days a year in training, Voss said. Airlines
will have to rethink their operations fundamentally if they're going to give pilots realistic opportunities to keep their
flying skills honed, he said.
The International Air Transport
Association says the most common type of airline accident is one in which planes stalled or otherwise lost control in flight.
It counted 51 such
accidents in the past five years.
See original article